Mecanismos neuro-hormonais envolvidos na regulação do apetite ao sódio: alguns aspectos

Conteúdo do artigo principal

Silmara Formenti
Eduardo Colombari

Resumo

O sódio é o principal íon do líquido extracelular e tem primordial importância para diversas funções fisiológicas. Manter a concentração plasmática do sódio dentro dos limites fisiológicos é vital para diversas espécies de animais, inclusive os humanos. Portanto, é fundamental que hajam mecanismos responsáveis pela monitorização e manutenção de níveis adequados de sódio no plasma. O apetite ao sódio, o comportamento que comanda a ingestão de sal, é estimulado por situações de deficiência sistêmica de sódio. Ao longo de décadas, diversos estudos foram desenvolvidos a fim de compreender os mecanismos neurais e hormonais envolvidos no controle desse comportamento. No entanto, muitas questões relacionadas a esse assunto ainda permanecem desconhecidas e a cada dia surgem novas evidências. Neste trabalho, foram revistos os fatos históricos, mecanismos neurais, hormonais e os achados mais recentes envolvendo apetite ao sódio.

Detalhes do artigo

Seção
Artigos de Revisão

Referências

Richter CP. Increased salt appetite in adrenalectomized rats. Am J Physiol. 1936;115:155-61.

Blair-West JR, Coghlan JP, Denton DA, Nelson JF, Orchard E, Scoggins BA, et al. Physiological, morphological and behavioural adaptation to a sodium deficient environment by wild native Australian and introduced species of animals. Nature. 1968;217:922-8. http://dx.doi.org/10.1038/217922a0

Wilkins L, Richter CP. A great craving for salt by a child with cortico-adrenal insufficiency. J Am Med Assoc. 1940;114:866-8. http://dx.doi.org/10.1001/jama.1940.62810100001011

Richter CP, Eckert JF. Mineral metabolism of adrenalectomized rats studied by the appetite method. Endocrinol. 1938;22:214-24. http://dx.doi.org/10.1210/endo-22-2-214

Rice KK, Richter CP. Increased sodium chloride and water intake of normal rats treated with desoxycorticosterone acetate. Endocrinol. 1943;33: 106-15. http://dx.doi.org/10.1210/endo-33-2-106

Orent-Keiles E, Robinson A, McCollum EV. The effects of sodium deprivation on the animal organism. Am J Physiol. 1937;119:651-61.

Wilkins L, Richter CP. A great craving for salt by a child with cortico-adrenal insufficiency. J Am Med Assoc. 1940;114:866-8. http://dx.doi.org/10.1001/jama.1940.62810100001011

Thunhorst RL, Lewis SJ, Jonhson AK. Effects of sinoaortic barorreceptor denervation on depletion-induced salt appetite. Am J Physiol. 1994;267:R1043-R1049.

Schreihofer AM, Anderson BK, Schiltz JC, Xu L, Sved AF, Stricker EM. Thrist and salt appetite elicited by hypovolemia in rats with chronic lesions of the nucleus of the solitary tract. Am J Physiol. 1999;276:R251-R258.

Weisinger RS, Considine P, Denton DA, et al. Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature. 1979;280:490-1. http://dx.doi.org/10.1038/280490a0

Weisinger RS, Considine P, Denton DA, Leksell L, McKinley MJ, Mouw DR, et al. Role of sodium concentration of the cerebrospinal fluid in the salt appetite of sheep. Am J Physiol Integr Comp Physiol. 1982;242:R51-R63.

Frankmann SP, Sollars SI, Bernstein IL. Sodium appetite in the sham-drinking rat after chorda tympani nerve transection. Am J Physiol Regul Integr Comp Physiol. 1996;271:R339-R345.

Stricker EM, Hoffmann ML. Presystemic signals in the control of thrist, salt appetite, and vasopressin secretion. Physiol Behav. 2007;91:404-12. http://dx.doi.org/10.1016/j.physbeh.2007.04.007

Curtis KS, Stricker EM. Enhanced fluid intake by rats after capsaicin treatment. Am J Physiol Regul Integr Comp Physiol. 1997; 272: R704-R709.

Wang T, Edwards GL. Differential effects of dorsomedial medulla lesion size on ingestive behavior in rats. Am J Physiol Regul Integr Comp Physiol. 1997;273:R1299-R1308.

Ogihara CA, Schoorlemmer GHM, Colombari E, et al. Changes in sodium appetite evoked by lesions of the commissural nucleus of the tractus solitarius. Braz J Med Biol Res. 2009;42:561-6. http://dx.doi.org/10.1590/S0100-879X2009000600014

Fitzsimons JT. Angiotensin, thrist, and sodium appetite. Physiol Rev. 1998;78:583-686.

Geerling JC, Kawata M, Loewy AD. Aldosterone-sensitive neurons in the rat central nervous system. J Comp Neurol. 2006b;494: 515-27. http://dx.doi.org/10.1002/cne.20808

Formenti S, Schoorlemmer GHM, Moreira TS, et al. Mecanismos neurais da aldosterona no controle cardiovascular e do equilíbrio hidroeletrolítico. Arq Bras Ciênc Saúde. 2008;33:54-63.

Geerling JC, Engeland WC, Kawata M, et al. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci. 2006a;26:411-7. http://dx.doi.org/10.1523/JNEUROSCI.3115-05.2006

Menani JV, Thunhorst RL, Jonhson AK. Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol. 1996;270:R162-R168.

Zardetto-Smith AM, Beltz TG, Johnson AK. Role of the central nucleus of the amygdala and the bed nucleus of the stria terminalis in experimentally-induced salt appetite. Behav Brain Res. 1994;645:123-34. http://dx.doi.org/10.1016/0006-8993(94)91645-4

Sakai RR, Ma LY, Zhang DM, et al. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinol. 1996;64:425-9. http://dx.doi.org/10.1159/000127148

Sakai RR, McEwen BS, Fluharty SJ, et al. The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int. 2000;57:1337-45. http://dx.doi.org/10.1046/j.1523-1755.2000.00972.x

Fitts DA, Tejpkes DS, Bright RO. Salt appetite and lesions of the ventral part of the ventral median preoptic nucleus. Behav Neurosci. 1990;104:818-27. http://dx.doi.org/10.1037/0735-7044.104.5.818

Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is supressed by interference with angiotensin II and aldosterone. Am J Physiol, 1986;251:R762-R768.

Francis J, Weiss RM, Wei SG, Johnson AK, Beltz TG, Zimmerman K, et al. Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. Am J Physiol Heart Circ Physiol. 2001;281:H2241-H2251.

Sullivan MJ, Hasser EM, Moffitt JA, et al. Rats exhibit aldosterone-dependent sodium appetite during 24 h hindlimb unloading. J Physiol. 2004;557:661-70. http://dx.doi.org/10.1113/jphysiol.2004.062265

Janiak PC, Lewis SJ, Brody MJ. Role of central mineralocorticoid binding sites in development of hypertension. Am J Physiol Regul Integr Comp Physiol. 1990;259:R1025-R1034.

Rahmouni K, Sibug RM, Kloet ER, Barthelmebs M, Grima M, Imbs JL, et al. Effects of brain mineralocorticoid receptor blockade on blood pressure and renal functions in DOCA-salt hypertension. Eur J Phamacol. 2002;436:207-16. http://dx.doi.org/10.1016/S0014-2999(01)01586-2

Formenti S, Schoorlemmer GHM, Menani JV, Colombari E. Functional evidence of hindbrain mechanism for aldosterone-induced sodium appetite. Appetite. 2009;52:832. http://dx.doi.org/10.1016/j.appet.2009.04.076

Formenti S, Schoorlemmer GHM, Menani JV, et al. Central mineralocorticoid receptor blockade reduces sodium appetite in rats: new evidence for an old effect. Faseb J. 2010;24.

Bryant RW, Epstein AN, Fitzsimons JT, et al. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol. 1980;301:365-82.

Avrith DB, Fitzsimons JT. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol. 1980;301:349-64.

Sakai RR, Chow SY, Epstein AN. Peripheral angiotensin II is not the cause of sodium appetite in the rat. Appetite. 1990a;15:161-70. http://dx.doi.org/10.1016/0195-6663(90)90017-3

Sakai RR, Epstein AN. Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behav Neurosci. 1990b;104:167-76. http://dx.doi.org/10.1037/0735-7044.104.1.167

Wolf G. Effect of deoxycorticosterone on sodium appetite of intact and adrenalectomized rats. Am J Physiol. 1965;208:1281-5.

Wolf G, Handal PJ. Aldosterone-induced sodium appetite: dose-response and specificity. Endocrinol. 1966;78:1120-4. http://dx.doi.org/10.1210/endo-78-6-1120

Rowland NE, Morian KR, Nicholson TM, et al. Preference for NaCl solutions in sham drinking Sprague-Dawley rats: water deprivation, sodium depletion, and angiotensin II. Physiol Behav. 1994;57:753-7. http://dx.doi.org/10.1016/0031-9384(94)00321-1

Weisinger RS, Woods SC. Aldosterone-elicited sodium appetite. Endocrinol. 1971;89:538-44. http://dx.doi.org/10.1210/endo-89-2-538

Fluharty SJ, Epstein AN. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci. 1983;97:746-58. http://dx.doi.org/10.1037/0735-7044.97.5.746

Epstein AN. Mineralocorticoids e cerebral angiotensin may act together to produce sodium appetite. Peptides. 1982;3:493-4. http://dx.doi.org/10.1016/0196-9781(82)90113-9

Fregly MJ, Rowland NE. Role of renin-angiotensin-aldosterone system in NaCl appetite of rats. Am J Physiol Regul Integr Comp Physiol. 1985;248:R1-R11.

Rowland NE, Morian KR. Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. Am J Physiol Integr Comp Physiol. 1999;276:R1453-R1470.

Ma LY, McEwen BS, Sakai RR, et al. Glucocorticoids facilitate mineralocorticoid-induced sodium intake in the rat. Horm Behav. 1993;27:240-50. http://dx.doi.org/10.1006/hbeh.1993.1018

Stricker EM, Verbalis JG. Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci. 1987;101:560-7. http://dx.doi.org/10.1037/0735-7044.101.4.560

Blackburn RE, Stricker EM, Epstein AN. Central oxytocin mediates inhibition of sodium appetite by naloxone in hypovolemic rats. Neuroendocrinol. 1992;56:255-63. http://dx.doi.org/10.1159/000126236

Sato MA, Sugawara AM, Menani VJ, et al. Idazoxan and the effect of intracerebroventricular oxytocin or vasopressin on sodium intake of sodium-depleted rats. Regul Pept. 1997;69:137-42. http://dx.doi.org/10.1016/S0167-0115(97)00005-0

Flynn FW, Kirchner TR, Clinton ME. Brain vasopressin and sodium appetite. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1236-R1244.

Antunes-Rodrigues J, McCann SM, Samson WK. Central administration of atrial natriuretic factor inhibits saline preference in rats. Endocrinol. 1986;118:1726-8. http://dx.doi.org/10.1210/endo-118-4-1726