Interações em processos fisiológicos: a importância da dinâmica entre matriz extracelular e proteoglicanos

Conteúdo do artigo principal

Renan Salvioni de Souza
Maria Aparecida da Silva Pinhal

Resumo

A matriz extracelular foi considerada por muito tempo uma estrutura inerte constituída por várias proteínas e polissacarídeos sintetizados e secretados pelas células para o preenchimento do espaço extracelular. Atualmente sabe-se que, além de auxiliar na ligação das células para a formação dos tecidos, a matriz extracelular tem papel importante no controle do crescimento e na diferenciação celular e, nessa interação, moléculas como proteoglicanos, glicosaminoglicanos, proteases e glicosidases desencadeam eventos de sinalização celular. Os proteoglicanos presentes na matriz extracelular realizam importantes funções, dentre elas, regulação da atividade de moléculas sinalizadoras, controle do tráfego de células e moléculas, atuação como coreceptores e interação com proteínas fibrosas da matriz. Esta revisão tem enfoque nas características estruturais da matriz extracelular, de proteoglicanos e do papel fundamental das interações celulares.

Detalhes do artigo

Seção
Artigos de Revisão

Referências

Guest I, Uetrecht J. Drugs that induce neutropenia/agranulocytosis may target specific components of the stromal cell extracellular matrix. Med Hypotheses. 1999;53(2):145-51. http://dx.doi.org/10.1054/mehy.1998.0734

Hay ED. Biogenesis and organization of extracellular matrix. FASEB J. 1999;13 Suppl 2:S281-3.

Junqueira LC, Carneiro J. Histologia Básica. 11 ed. Rio de Janeiro: Guanabara Koogan; 2004. p. 92-241.

Kram V, Zcharia E, Yacoby-Zeevi O, Metzger S, Chajek-Shaul T, Gabet Y, et al. Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass. J Cell Physiol. 2006;207(3):784-92. http://dx.doi.org/10.1002/jcp.20625

Gambarini AG, Miyamoto CA, Lima GA, Nader HB, Dietrich CP. Mitogenic activity of acidic fibroblast growth factor is enhanced by highly sulfated oligosaccharides derived from heparin and heparan sulfate. Mol Cell Biochem. 1993;124(2):121-9. http://dx.doi.org/10.1007/BF00929204

Porcionatto MA, Nader HB, Dietrich CP. Heparan sulfate and cell division. Braz J Med Biol Res. 1999;32(5):539-44. http://dx.doi.org/10.1590/S0100-879X1999000500006

Tajika K, Ikebuchi K, Dan K, Asano S. A role of GAGs in ECM on morphogenesis of megakaryocytes. Br J Haematol. 1996;94(1):34-9. http://dx.doi.org/10.1046/j.1365-2141.1996.d01-1781.x

Tenório D, Santos M, Zorn T. Distribution of biglycan and decorin in rat dental tissue Braz J Med Biol Res. 2003;36(8):1061-5. http://dx.doi.org/10.1590/S0100-879X2003000800012

Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK. Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J. 2010;277(19):3904-23. http://dx.doi.org/10.1111/j.1742-4658.2010.07800.x

Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. Essentials of Glycobiology. 2 ed. New York: Cold Spring Harbor; 2009.

Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem. 1998;67:609-52. http://dx.doi.org/10.1146/annurev.biochem.67.1.609

Iozzo RV. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem. 1999;274(27):18843-6. http://dx.doi.org/10.1074/jbc.274.27.18843

Stichel CC, Kappler J, Junghans U, Koops A, Kresse H, Müller HW. Differential expression of the small chondroitin/dermatan sulfate proteoglycans decorin and biglycan after injury of the adult rat brain. Brain Res. 1995;704(2):263-74. http://dx.doi.org/10.1016/0006-8993(95)01131-5

Wassenhove-McCarthy DJ, McCarthy KJ. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J Biol Chem. 1999;274(35):25004-17. http://dx.doi.org/10.1074/jbc.274.35.25004

Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729-77. http://dx.doi.org/10.1146/annurev.biochem.68.1.729

Franco CR, Trindade ES, Rocha HA, da Silveira RB, Paludo KS, Chammas R, et al. Glycosaminoglycan chains from alpha5beta1 integrin are involved in fibronectin-dependent cell migration. Biochem Cell Biol. 2009;87(4):677-86. http://dx.doi.org/10.1139/O09-047

Shioi J, Pangalos MN, Ripellino JA, Vassilacopoulou D, Mytilineou C, Margolis RU, et al. The Alzheimer amyloid precursor proteoglycan (appican) is present in brain and is produced by astrocytes but not by neurons in primary neural cultures. J Biol Chem. 1995;270(20):11839-44. http://dx.doi.org/10.1074/jbc.270.20.11839

Fransson LA, Carlstedt I, Cöster L, Malmström A. Binding of transferrin to the core protein of fibroblast proteoheparan sulfate. Proc Natl Acad Sci U S A. 1984;81(18):5657-61. http://dx.doi.org/10.1073/pnas.81.18.5657

Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TGF-beta type III receptor. Cell. 1991;67(4):797-805. http://dx.doi.org/10.1016/0092-8674(91)90074-9

Iozzo RV, Murdoch AD. Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. FASEB J. 1996;10(5):598-614.

Oohira A, Matsui F, Watanabe E, Kushima Y, Maeda N. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum. Neuroscience. 1994;60(1):145-57. http://dx.doi.org/10.1016/0306-4522(94)90210-0

Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest. 2001;108(2):169-73. http://dx.doi.org/10.1172/JCI200113530

Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002;31(6-7):423-35. http://dx.doi.org/10.1023/A:1025731428581

Garwood J, Heck N, Reichardt F, Faissner A. Phosphacan short isoform, a novel non-proteoglycan variant of phosphacan/receptor protein tyrosine phosphatase-beta, interacts with neuronal receptors and promotes neurite outgrowth. J Biol Chem. 2003;278(26):24164-73. http://dx.doi.org/10.1074/jbc.M211721200

Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15:483-94. http://dx.doi.org/10.1038/sj.cr.7290318

Nelson DL, Cox MM. Lehninger Principles of Biochemistry. 5 ed. New York: Freeman; 2008. p. 237-40.

Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: hostassociated molecular patterns for initiation and modulation of inflammation. FASEB J. 2006;20(1):9-22. http://dx.doi.org/10.1096/fj.05-4682rev

Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729-77. http://dx.doi.org/10.1146/annurev.biochem.68.1.729

Irving-Rodgers HF, Hummitzsch K, Murdiyarso LS, Bonner WM, Sado Y, Ninomiya Y, et al. Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice. Cell Tissue Res. 2010;339(3):613-24. http://dx.doi.org/10.1007/s00441-009-0905-8

Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72(6):455-82. http://dx.doi.org/10.1111/j.1747-0285.2008.00741.x

Ruoslahti E. Structure and biology of proteoglycans. Annu Rev Cell Biol. 1988;4:229-55. http://dx.doi.org/10.1146/annurev.cb.04.110188.001305

Ruoslahti E. Proteoglycans in cell regulation. J Biol Chem. 1989;264(23):13369-72.

Almeida PC, Nantes IL, Chagas JR, Rizzi CC, Faljoni-Alario A, Carmona E, et al. Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem. 2001;276(2):944-51. http://dx.doi.org/10.1074/jbc.M003820200

Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal. 2009;21(11):1548-58. http://dx.doi.org/10.1016/j.cellsig.2009.05.001

Michelacci YM, Mourão PA, Laredo J, Dietrich CP. Chondroitin sulfates and proteoglycans from normal and arthrosic human cartilage. Connect Tissue Res. 1979;7(1):29-36 http://dx.doi.org/10.3109/03008207909152350

Moscatello DK, Santra M, Mann DM, McQuillan DJ, Wong AJ, Iozzo RV. Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J Clin Invest. 1998;101(2):406-12. http://dx.doi.org/10.1172/JCI846

Honardoust D, Eslami A, Larjava H, Häkkinen L. Localization of small leucine-rich proteoglycans and transforming growth factor-beta in human oral mucosal wound healing. Wound Repair Regen. 2008;16(6):814-23. http://dx.doi.org/10.1111/j.1524-475X.2008.00435.x

Mataveli FD, Han SW, Nader HB, Mendes A, Kanishiro R, Pinhal MA, et al. Long-term effects for acute phase myocardial infarct VEGF165 gene transfer cardiac extracellular matrix remodeling. Growth Factors. 2009;27(1):22-31. http://dx.doi.org/10.1080/08977190802574765

Chang MY, Olin KL, Tsoi C, Wight TN, Chait A. Human monocyte-derived macrophages secrete two forms of proteoglycan-macrophage colonystimulating factor that differ in their ability to bind low density lipoproteins. J Biol Chem. 1998;273(26):15985-92. http://dx.doi.org/10.1074/jbc.273.26.15985

Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, et al. Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev. 2008;22(19):2645-50. http://dx.doi.org/10.1101/gad.1711308

Heinegård D. Proteoglycans and more: from molecules to biology. Int J Exp Pathol. 2009;90(6):575-86. http://dx.doi.org/10.1111/j.1365-2613.2009.00695.x