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ABSTRACT
Introduction: Twenty-five to 29% of the global population experiences pain that 
motivates seeking emergency services. Objective: To evaluate the effect of schizophyllan 
glucan polysaccharide (SPG), an isolated β-(1→3),(1→6) glucan polysaccharide of 
Schizophyllum commune, in acute pain and neuromuscular performance on pre-
clinical models. Methods: Male adult Swiss mice (20-30g, 60 days) were acclimated 
for a week in groups of 7 per cage before the experiment. SPG was administered, 
intraperitoneally, at doses of 0.1, 1.0, 3.0, 5.0, 10.0, 30.0, and 100.0 mg/Kg for the 
writhing test, and 1.0, 10.0, and 30.0 mg/Kg for the formalin and Rotarod tests, 
respectively. Statistical analysis was performed using one-way ANOVA, followed by 
the Duncan post hoc test, respectively, as appropriate (p<0.05). Results: Regarding the 
abdominal writhing test, SPG doses of 1.0, 5.0, 10.0, 30.0, and 100.0 mg/Kg promoted 
a significant reduction in writing of, respectively, 90.6%, 86.6%, 83.0%, 86.6%, and 
76.2%. In the formalin test, the dose of SPG 30 mg/Kg reduced phase II nociception 
time by 78.0%. Relevant sedation was observed only to SPG 100 mg/Kg in the Rotarod 
test. Conclusion: SPG showed significant analgesic effects on acute inflammatory pain 
without causing concomitant central nervous system depression.
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INTRODUCTION
According to the Montreal Declaration signed by the International Pain Summit 

(IPS) of the International Association for the Study of Pain (IASP), access to pain treat-
ment should be recognized as a human right1. 25% to 29% of the global population 
experiences pain, which is the primary reason for seeking emergency services. 78% of 
emergency service consultations are related to pain, with one-third of those individuals 
reporting intense pain2.
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Despite the global popularity of nonsteroidal anti-inflamma-
tory drugs (NSAIDs) as one of the highest-selling drugs, with 
an annual market value of around 25 million dollars, there are 
several side effects associated with their extensive use, which 
include indigestion, stomach ulcers, dizziness, nephrotoxicity, 
allergic reactions, headache, and others. Hence, the medical 
and scientific community remains intrigued by the ongoing 
pursuit of effective pharmacological monitoring for specific 
types of pain3.

Various polysaccharides derived from fungi have been docu-
mented in the literature for their therapeutic potential. Among 
them, β-(1→3)-glucans are known to modulate the immune sys-
tem, making them a promising alternative for reducing acute 
pain symptoms4.

Schizophyllum commune is a macrofungus typically found in 
decaying wood during rainy seasons in tropical and subtropical 
forests. While it is primarily known for being edible, compounds 
with significant activity against cancers, tumors, and immuno-
modulation have been unequivocally identified in recent studies 
conducted on this species5-7.

Based on the above, there is a growing focus on identifying new 
molecular targets for pain management. One of the most impor-
tant stages in developing safe and effective therapies is pre-clinical 
research, which helps to identify potential pathways and mini-
mize risks.

Given the previously proposed anti-inflammatory, antioxidant, 
and analgesic properties of fungal polysaccharides8,9 and the im-
portance of controlling acute pain, substances derived from S. 
commune may be an effective and safe alternative to alleviate it.

Thus, this study aims to evaluate the effect of schizophyllan 
glucan polysaccharide (SPG), an isolated β-(1→3),(1→6) glucan 
polysaccharide of Schizophyllum commune, in acute pain and 
neuromuscular performance on pre-clinical models.

METHODS

Production, extraction, purification, and 
characterization of the polysaccharide

The strain used to produce exopolysaccharides was 
Schizophyllum commune 227E.32, collected from the Atlantic 
Forest biome (28°58’08.33’S; 50°28’58.08’W ‘W ‘W). The Institute 
of Biotechnology at the University of Caxias do Sul partnered in 
cultivating S. commune to obtain its exopolysaccharides. The sub-
sequent extraction and purification processes were also conduct-
ed through this partnership.

The purification and characterization of polysaccharides con-
cerning monosaccharide composition, types of glycosidic bonds, 
and structure was developed in partnership with the Department 
of Chemistry at the Federal University of Catalão - GO.

To conduct this work, a 3 g sample of the polysaccharide was 
used to prepare experimental solutions. Production, purifica-
tion, and characterization were previously described by Vanin 
et  al.10, confirming the structure β-(1→3)-glucan partially sub-
stituted in 0-6 by non-reducing glucose residues as β-(1→3)-(1→ 
6)-glucan.

Animals
Before experimentation, adult Swiss mice of the Mus musculus 

species were allowed a week to acclimate. These male mice weighed 
between 20 and 30 grams and were 60 days old. They were housed 
in groups of seven in a temperature-controlled environment with 
a 12-hour light/12-hour dark cycle. Additionally, they were pro-
vided with free access to food and water. All these conditions met 
the recommended protocols outlined in the “Guide for the Care 
and Use of Laboratory Animals, 1996”. And according to the pro-
visions of the Brazilian Federal Law 11,794 the 2008, and the 
Normative Resolutions of the National Council for the Control of 
Animal Experimentation – CONCEA in 2008. The research proj-
ect was conducted only after its approval by the Ethics Committee 
on Animal Use (CEUA) of the University of the Region of Joinville 
(UNIVILLE) (Protocol # 001/2021).

Acute pain models

Writing test

The nociceptive response was induced by intraperitoneal (i.p.) 
injection of 0.9% acetic acid (0.1 mL/10 g, i.p.) in mice that were 
given SPG thirty minutes before (0.1, 1, 3, 5, 10, 30 and 100 mg/
kg, i.p.) to screen the most effective dose. Control group animals 
received only 0.9% saline solution followed by acetic acid (0.1 
mL/10 g, i.p.). The other control groups received all SPG doses 
before a 0.9% saline solution.

The animals were observed for 20 minutes, and the number 
of abdominal writhings as an arching of back, extension of hind 
limbs, and contraction of abdominal musculature was registered11.

Formalin test
Animals were treated with SPG 1, 10, and 30 mg/kg (i.p.) half 

an hour before intraplantar injection of formalin (2.5%, 40 μL) or 
intraplantar saline solution (40 μL) in the left paw. Immediately 
after, the animals were observed for 40 minutes to monitor the 
time of nociceptive behavior. Control of animals received 0.9% 
saline solution (40 μL, intraplantar) in the left paw12,13. The other 
control group received 0.9% saline solution (40 μL, intraplantar) 
after formalin (2.5%, 40 μL) without receiving SPG.

The nociceptive behavior was observed in 10 blocks of 5 min-
utes, and the results were expressed as the time (seconds) that the 
animals performed a nociceptive behavior (paw shaking, licking, 
and paw elevation).
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Rotarod Test
The Rotarod test14 is one of the oldest used to assess the effects of 

a drug on animal behavior. It provides a quick estimate of whether a 
substance affects neuromuscular coordination. The Rotarod consists 
of a circular rod rotating at a constant or increasing speed15. Drugs 
that alter neuromuscular coordination, such as benzodiazepines, re-
duce the time that animals can remain on the pole16. Diazepam is 
normally used as a reference when performing the test17.

The test was performed with mice treated once daily with SPG 
(1, 5, 10, 30, and 100 mg/kg, i.p.) after 12 and 17 days of exposi-
tion. The number of falls for three minutes was registered one hour 
after the last SPG administration for each period of exposition.

Statistical analysis
Statistical analyses were performed using the IBM Statistical 

Package for Social Sciences (SPSS) for Windows, version 20.0, us-
ing a PC-compatible computer (IBM Corp. Armonk, NY, USA). 
The Kolmogorov-Smirnov normality test was performed to con-
firm a parametric distribution; data were then analyzed by one-way 
ANOVA, followed by Duncan’s posthoc test when the F-test was sig-
nificant. Values of p<0.05 were considered significant. Results are ex-
pressed as means ± SD for seven independent experiments (animals). 

RESULTS

Effect of SPG on the writhing test
Animals given saline or SPG dose thirty minutes before receiv-

ing saline did not demonstrate a significant writhing response. 

Thirty minutes after the administration of saline, induced signifi-
cant writing in comparison to controls (p<0.001), which were sig-
nificantly reduced by all doses of SPG. A 0.1 mg/Kg SPG dose pro-
moted a significant reduction of writing (21.8%), but its intensity 
was statistically lower than the 1 mg/Kg onward dose (Figure 1). 
Reduction of writing were, respectively, 90.6%, 86.6%, 83.0%, 
86.6%, and 76.2% for 1, 5, 10, 30, and 100 mg/kg doses of SPG.

Effect of SPG in the formalin test
SPG was ineffective in reducing the nociception time of the first 

phase of the formalin test (Figure 2A). The second phase was not 
changed by SPG 1 and 10 mg/Kg. However, 30 mg/Kg SPG pro-
moted a significant reduction of 78.0% (Figure 2B) of nociception 
time. No SPG doses promoted significant nociception time in ani-
mals that received intraplantar saline solution. 

Effect of chronic administration of SPG on the 
rotarod test

Chronic administration of SPG 100 mg/kg promoted statisti-
cally significant sedation on the 12th (Figure 3A) and 17th days of 
exposition (Figure 3B). All other SPG doses promoted no signifi-
cant sedation during the whole exposition period.

DISCUSSION
This study investigated the effect of SPG in preclinical acute 

pain models and motor performance. The potential of SPG in 
the biological assays described in this work is related to the an-
ti-inflammatory activity of β-1,3-glucans substituted in O-6 by 

Figure 1: Writhing test in mice exposed to different doses of SPG.

*Statistically significant difference compared to saline and SPG control groups (p<0.001). **Statistically significant difference between the 0.1mg/kg SPG group 
compared to the acetic acid and saline group (p<0.001). #Statistically significant difference compared to 0.1 mg/Kg SPG and acetic acid group (p<0.001).
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D-Glcp. The significant reduction of writing and formalin second 
phase tests indicates an antinociceptive effect that may be relat-
ed to a possible anti-inflammatory activity. Acetic acid-induced 
abdominal writhing in mice was first described by Siegmund18. 
This  test is highly sensitive to the presence of analgesic activity, 
fast and simple to perform, and, therefore, widely used to screen 
anti-inflammatory properties, since acetic acid promotes and 

induces local inflammatory process, whose mediators result in 
sensitization of nociceptors and consequent expression of the ste-
reotypical behavior of pain by the animals19,20.

It is also important to mention that the administration of 
SPG 1 mg/kg promoted a maximum analgesic effect, once high-
er doses did not differ significantly from that, evidencing the 
consistency of the SPG effect. No dose of the SPG promoted 

Figure 2: Effect of different doses of SPG on the first (A) and second phases (B) of the formalin test.

*Statistically significant differences about the saline-saline group (p<0.001). **Statistically significant difference between the saline-formalin, 1mg/kg-formalin, 
and 10mg/kg-formalin groups (p<0.001).

Figure 3: Rotarod test in animals exposed to different doses of SPG for twelve (A) and seventeen days (B).

*Statistically significant difference between saline and SPG groups (p<0.001).
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writhing at a relevant intensity in animals that received saline as 
a control of acetic acid, so the SPG did not tend to cause signifi-
cant local inflammation.

The formalin test evaluates the amount of time the animals 
spend expressing nociceptive behavior directed to the injected 
paw as an algic response. The model evaluates two phases of noci-
ceptive behavior: the initial phase lasting the first five minutes and 
the late phase lasting 20 to 40 minutes after formalin injection. 
A primary afferent C-fiber drive is linked to both phases of the 
behavioral response, which is expected to initiate and maintain 
activity-dependent sensitization at the spinal level12,21,22.

Phase one of the formalin tests is characterized by nociceptive 
pain, mediated by direct depolarization of nociceptors due to 
the stimulus caused by the intraplantar application of formalde-
hyde, which promotes tissue damage. The early phase is short, 
followed by a brief period of relative dormancy. This phase is 
attenuated by drugs that act on opioid receptors since they pro-
mote the hyperpolarization of nociceptors or by antagonistic 
compounds of ionotropic receptors for glutamate, which are 
ionic channels permeable to ions that trigger action potentials 
in nociceptive neurons23.

The second phase of the formalin test is due to the recruitment 
of the inflammatory response because of tissue damage induced 
by formalin, which is mediated by prostaglandins and, there-
fore, is attenuated by compounds with anti-inflammatory action, 
such as non-steroidal anti-inflammatory drugs and steroids24. 
Thus, the reduction of the second phase time of nociceptive be-
havior of the formalin test suggests that the compound has an 
anti-inflammatory effect and, therefore, analgesic action for pain 
arising from this nature: SPG may act by modulating the synthe-
sis of pro-inflammatory mediators, such as histamine, serotonin, 
bradykinin, and prostaglandins, that are recruited after tissue in-
jury caused by formalin.

In a recent study using a model for periodontal disease in-
duced by lipopolysaccharides from Aggregatibacter actino-
mycetemcomitans, it was found that β-(1,3)-glucans from S. 
commune, substituted in O-6 by D-Glcp, were responsible for 
upregulating IL-10. This response was stimulated by the activa-
tion of the Syk protein (splenic tyrosine kinase). The binding 
of the polysaccharide to dectin-1 in murine macrophages led 
to an upregulation of IL-10 expression and production, which 
occurred via pathways that are dependent on mitogen and 
stress-activated protein kinases (MSK1) and cAMP response 
element-binding protein (CREB). This resulted in an enhanced 
anti-inflammatory effect and response that could be potentially 
utilized to develop interventions for the treatment of inflamma-
tion caused by bacterial infections25.

The protective effects of total polysaccharides are lower when 
compared to purified β-glucans that contain only polysaccharides 
with β-linkages. This may be attributed to the lower amount of 

β-glucan in the total extracts, which is well-known for its sig-
nificant antioxidant properties. Fungal β-glucans exhibit diverse 
biological activities, and our objective was to establish a correla-
tion between their chemical structure and anti-inflammatory and 
antinociceptive activities26.

Smiderle et  al.27 indicated the antinociceptive and anti-in-
flammatory action of the β-(1→3), (1→6) glucan isolated from 
Pleurotus pulmonarius, a macrofungus from the same class as S. 
commune, in acute pain models (acetic acid-induced writhing and 
formalin test), that promoted a significant reduction of 96±4% in 
the nociception time with a 30 mg/Kg dose.

Ruthes et  al.28 also demonstrated that Amanita muscaria fu-
comannogalactan and β-D-glucan were successful in protecting 
mice against the inflammatory pain caused by formalin-induced 
nociception, reaching a reduction of 91 ± 8% to a 30 mg/Kg dose. 
Abreu et al.29 demonstrated in their work about Pholiota nameko 
that the β-D-glucan at 0.3, 1.0, and 3.0 mg/Kg significantly inhib-
ited the inflammatory pain in 24.8%, 56.9%, and 82.3%, respec-
tively, in the inflammatory phase of the formalin-induced noci-
ception in mice.  Interestingly, the same pattern was also observed 
in this study.

Purified mannogalactan from Pleurotus sajor-caju was effective 
in reducing acetic acid (54,2%), second-phase formalin (37,0%) 
nociception, and carrageenan-induced edema (70%) in mice30. 
These tests revealed that the anti-inflammatory action of the 
mushroom β-D-glucans, which approaches that of nonsteroidal 
anti-inflammatory medicines, is likely related to the analgesic 
effect27,28. Although these studies are not specific to S. commune 
β-glucans, they support the analgesic effects observed in inflam-
matory pain models of mushroom-derived structures.

It was found that the production of pro-inflammatory me-
diators (nitric oxide, IL-6, and tumoral necrosis factor-α), as 
well as the expression of induced nitric oxide synthase and cy-
clooxygenase-2, were all in varying degrees reduced by polysac-
charides linked to β-glucan, the triple-helical polysaccharides 
with β-(1→3),(1→6) linked glucose units exhibited stronger anti-
inflammatory activity, within a range of concentration that did 
not result in cell death toxicity31.

Yelithao et  al.32 reported that the primary immune response 
to fungal polysaccharides is triggered through complement (CR-
3) and Toll-like (TLR-4) receptors, and other studies involving 
basidiomycetes have shown an upregulation of gene expression 
for anti-inflammatory cytokines like interleukin (IL) -10 and 
IL-1232,33.

Baggio et al.35 evidenced that the β-(1→3),(1→6) glucan isolated 
from Pleurotus pulmonarius carried significant anti-inflammatory 
and analgesic (antinociceptive) properties related to a mechanism 
of antinociception involving interleukin-1 pathways, protein ki-
nase C inhibition, transient receptor potential channels, and iono-
tropic glutamate receptors in acute (glutamate, NMDA, AMPA, 
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