Automated phenotypic method versus manual method in the identification of microorganisms isolated from blood cultures: clinical and microbiological outcomes
Main Article Content
Abstract
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY) that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.References
Ledeboer NA. Automation advances microbiology to operational excellence. MLO Med Lab Obs. 2016;48(5):8-11.
Froment P, Marchandin H, Vande Perre P, Lamy B. Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated inoqula instrument. J Clin Microbiol. 2014;52(3):796-802. http://dx.doi.org/10.1128/JCM.02341-13
Fontanals D, Sanfeliu L, Pons L, Mariscal D, Torra M. Evaluation of the BacT/Alert and VITAL blood culture systems for the diagnosis of bacteremia. Clin Microbiol Infect. 1998;4(2):88-93. https://dx.doi.org/10.1111/j.1469-0691.1998.tb00361.x
Jacobs MR, Mazzulli T, Hazen KC, Good CE, Abdelhamed AM, Lo P, et al. Multicenter clinical evaluation of BacT/Alert Virtuo blood culture system. J Clin Microbiol. 2017;55(8):2413-21. https://dx.doi.org/10.1128/JCM.00307-17
Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 2013;137(9):1247-54. https://dx.doi.org/10.5858/arpa.2012-0651-OA
Pliakos EE, Andreatos N, Shehadeh F, Ziakas PD, Mylonakis E. The costeffectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without Antimicrobial Stewarship. Clin Microbiol Rev. 2018;31(3):e00095-17. https://dx.doi.org/10.1128/CMR.00095-17
Dauwalder O, Landrieve L, Laurent F, Montclos M, Vandenesch F, Lina G. Does bacteriology laboratory automation reduce time to results and increase quality management? Clin Microbiol Infect. 2016;22(3):236-43. https://dx.doi.org/10.1016/j.cmi.2015.10.037
Croxatto A, Prod’hom G, Faverion F, Rochais Y, Greub G. Laboratory automation in clinical bacteriology: what system to choose? Clin Microbiol Infect. 2016;22(3):217-35.https://dx.doi.org/10.1016/j.cmi.2015.09.030
Ling TKW, Liu ZK, Cheng AFB. Evaluation of the VITEK 2 system for rapid direct identification and susceptibility testing of Gram-negative bacilli from positive blood cultures. J Clin Microbiol. 2003;41(10):4705-7.https://dx.doi.org/10.1128/JCM.41.10.4705-4707.2003
Nimer NA, Al-Saa’da RJ, Abuelaish O. Accuracy of the VITEK®2 system for a rapid and direct identification and susceptibility testing of Gram-negative rods and Gram-positive cocci in blood samples. East Mediterr Health J. 2016;22(3):193-200.
Mitchell SL, Alby K. Performance of microbial identification by MALDI-TOF MS and susceptibility testing by VITEK 2 from positive blood cultures after minimal incubation on solid media. Eur J Clin Microbiol Infect Dis. 2017;36(11):2201-6. https://dx.doi.org/10.1007/s10096-017-3046-0
Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237-45. https://dx.doi.org/10.1093/cid/cit498
Delport JA, Strikwerda A, Armstrong A, Schaus D, John M. MALDI-ToF short incubation identification from blood cultures is associated with reduced length of hospitalization and decrease in bacteremia associated mortality. Eur J Clin Microbiol Infect Dis. 2017;36(7):1181-6.https://dx.doi.org/10.1007/s10096-017-2906-y
Cockerill FR, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, et al. Optimal testing parameters for blood cultures. Clin Infect Dis. 2004;38(12):1724-30. https://dx.doi.org/10.1086/421087
Mutters NT, Hodiamont CJ, Jong MD, Overmeijer HP, van den Boogaard M, Visser CE. Performance of kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med. 2014;34(2):111-7. https://dx.doi.org/10.3343/alm.2014.34.2.111
Croxatto A, Dijkstra K, Prod’hom G, Greub G. Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol. 2015;53(7):2298-307. https://dx.doi.org/10.1128/JCM.03076-14
Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014;6(5):534-8. https://dx.doi.org/10.3978/j.issn.2072-1439.2014.02.18
Febbraro F, Rodio DM, Puddioni G, Antonelli G, Pietropaolo V, Trancassini M. MALDI-TOF MS Versus VITEK® 2: Comparison of systems for the identification of microorganisms responsible for bacteremia. Curr Microbiol. 2016;73(6):843-50. https://dx.doi.org/10.1007/s00284-016-1121-x
Doern GV, Vautour RV, Gaudet M, Levy B. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol. 1994;32(7):1757-62.
Maurer FP, Christner M, Hentschke M, Rohde H. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. Infect Dis Rep. 2017;9(1):6839. https://dx.doi.org/10.4081/idr.2017.6839
Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, et al. Wild-Type MIC Distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48(1):52-6. https://dx.doi.org/10.1128/JCM.01590-09
Fernandes SC, Dhanashree B. Drug resistance & virulance determinants in clinical isolates of Enterococcus species. Indian J Med Res. 2013;137(5):981-5.
Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med. 2003;115(7):529-35. https://dx.doi.org/10.1016/j.amjmed.2003.07.005
Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother. 2005;49(4):1306-11. https://dx.doi.org/10.1128/AAC.49.4.1306-1311.2005
Höffken G, Niederman MS. Nosocomial pneumonia: the importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU. Chest. 2002; 112(6):2183-96. https://dx.doi.org/10.1378/chest.122.6.2183
Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospital- acquired pneumonia. Chest. 2005;128(4):2778-87. https://dx.doi.org/10.1378/chest.128.4.2778
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304-77. https://dx.doi.org/10.1007/s00134-017-4683-6