Morphometric aspects of the articular cartilage of rats treated with low-level laser therapy and exercise in a rheumatoid arthritis model
Main Article Content
Abstract
Introduction: Rheumatoid arthritis (RA) is classified as an autoimmune, chronic disease affecting diarthrodial joints and periarticular structures. Objective: To evaluate whether low-intensity laser treatment (LLLT) and/or exercise reduce the deleterious effects of tissue in a rheumatoid arthritis model. Methods: 128 rats were divided into two inflammatory periods: acute (7 days) and chronic (28 days) and subdivided into control, injury and treatment. The protocol with Freund's Complete Adjuvant was used in two inoculations, one intradermal and one intraarticular in the tibiofemoral joint, the control animals received saline solution. For treatment, LLLT 660 nm, 5 J/cm² was used in the sensitized joint and climbing exercise in stairways with an overload of 100 grams. After the experimental period, the animals were euthanized and the joints were prepared for morphometric analysis of the total thickness, superficial, deep, and cellular density of the articular cartilage. Generalized Linear Models with Sidak post-test were chosen. Results: The control group was found to be different from the lesion group with greater joint cartilage thickness, and the animals treated with exercise alone increased the joint cartilage compared to the control group. Conclusion: The animals treated with laser association and exercise showed improvement in the morphometric aspects of the articular cartilage.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY) that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.References
Huang CC, Chiou CH, Liu SC, Hu SL, Su CM, Tsai CH, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res. 2019;66(3):e12560. https://doi.org/10.1111/jpi.12560
Vaks K, Sjöström R. Rheumatoid arthritis patients’ experience of climate care. J Exerc Rehabil. 2015;11(6):337-44. https://doi.org/10.12965/jer.150228
Fujimori M, Nakamura S, Hasegawa K, Ikeno K, Ichikawa S, Sutherland K, et al. Cartilage quantification using contrast-enhanced MRI in the wrist of rheumatoid arthritis: Cartilage loss is associated with bone marrow edema. Br J Radiol. 2017;90(1077):20170167. https://doi.org/10.1259/bjr.20170167
Harre U, Schett G. Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin Immunopathol. 2017;39(4):355-63. https://doi.org/10.1007/s00281-017-0634-0
Brosseau L, Welch V, Wells G, Bie R, Gam A, Harman K, et al. Low-level laser therapy ( Classes I, II, and III ) for treating rheumatoid arthritis. 2000;(2):CD002049. https://doi.org/10.1002/14651858.CD002049
Khozeimeh F, Moghareabed A, Allameh M, Baradaran S. Comparative evaluation of low-level laser and systemic steroid therapy in adjuvant-enhanced arthritis of rat temporomandibular joint : a histological study. Dent Res J (Isfahan). 2015;12(3):215-23.
Neves M, Retameiro ACB, Tavares ALF, Reginato A, Menolli RA, Leal TSS, et al. Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis. Lasers Med Sci. 2020;35(6):1277-87. https://doi.org/10.1007/s10103-019-02905-2
Lange E, Kucharski D, Svedlund S, Svensson K, Bertholds G, Gjertsson I. Effects of aerobic and resistance exercise in older adults with rheumatoid arthritis : a randomized controlled trial. Arthritis Care Res (Hoboken). 2019;71(1):61-70. https://doi.org/10.1002/acr.23589
Lange E, Palstam A, Gjertsson I, Mannerkorpi K. Aspects of exercise with person-centered guidance influencing the transition to independent exercise: a qualitative interview study among older adults with rheumatoid arthritis. Eur Rev Aging Phys Act. 2019;16:4. https://doi.org/10.1186/s11556-019-0211-8
Luan X, Tian X, Zhang H, Huang R, Li N, Chen P, et al. Exercise as a prescription for patients with various diseases. J Sport Health Sci. 2019;8(5):422-41. https://doi.org/10.1016/j.jshs.2019.04.002
Kunz RI, Silva LI, Costa JRG, Soares CLR, Bertolini GRF, Brancalhão RMC, et al. Alterações histomorfométricas na articulação do joelho de ratos Wistar após remobilização em meio aquático. Fisioter Pesqui. 2015;22(3):317-24. https://doi.org/10.590/1809-2950/14234922032015
Lovison K, Vieira L, Kunz RI, Ribeiro S, Antunes S, Karvat J, et al. Resistance exercise recovery morphology and AQP1 expression in denervated soleus muscle of Wistar rats. Motricidade. 2018;14(1):40-50. https://doi.org/10.6063/motricidade.11788
Gomes RP, Bressan E, Silva TM, Gevaerd MS, Tonussi CR, Domenech SC. Efeitos de um minuto e dez minutos de deambulação em ratos com artrite induzida por adjuvante completo de Freund sobre os sintomas de dor e edema. Rev Bras Reumatol. 2014;54(2):83-9. https://doi.org/10.1016/j.rbr.2014.03.001
Torpy JM, Perazza GD, Golub RM. Rheumatoid arthritis. JAMA. 2011;305(17):1824. https://doi.org/10.1001/jama.305.17.1824
Smith KC. Molecular targets for low level light therapy. Laser Ther. 2010;19(3):135-42. https://doi.org/10.5978/islsm.19.135
Haslerud S, Magnussen LH, Joensen J, Lopes-Martins RAB, Bjordal JM. The efficacy of low-level laser therapy for shoulder tendinopathy: a systematic review and meta-analysis of randomized controlled trials. Physiother Res Int. 2015;20(2):108-25. https://doi.org/10.1002/pri.1606
Trawitzki BF, Lilge L, Figueiredo FAT, Macedo AP, Issa JPM. Low-intensity laser therapy efficacy evaluation in mice subjected to acute arthritis condition. J Photochem Photobiol B. 2017;174:126-32. http://dx.doi.org/10.1016/j.jphotobiol.2017.07.028
Takhtfooladi MA, Jahanbakhsh F, Takhtfooladi HA, Yousefi K, Allahverdi A. Effect of low-level laser therapy (685 nm, 3 J/cm2) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci. 2015;30(3):1047-52. http://dx.doi.org/10.1007/s10103-015-1709-6
Neves LMS, Leite GPMF, Marcolino AM, Pinfildi CE, Garcia SB, Araújo JE, et al. Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci. 2017;32(2):335-41. http://dx.doi.org/10.1007/s10103-016-2118-1
Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52(11):3507-14. http://dx.doi.org/10.1002/art.21415
van Zanten JJCSV, Rouse PC, Hale ED, Ntoumanis N, Metsios GS, Duda JL, et al. Perceived barriers , facilitators and benefits for regular physical activity and exercise in patients with rheumatoid arthritis : a review of the literature. Sport Med. 2015;45(10):1401-12. http://dx.doi.org/10.1007/s40279-015-0363-2
Hurkmans EJ, Jones A, Li LC, Vlieland TPMV. Quality appraisal of clinical practice guidelines on the use of physiotherapy in rheumatoid arthritis: A systematic review. Rheumatology. 2011;50(10):1879-88. http://dx.doi.org/10.1093/rheumatology/ker195