Immune response in acute respiratory syndrome induced by the new coronavirus
Main Article Content
Abstract
Coronaviruses (CoVs) belong to the family Coronaviridae, which are enveloped and have a single-stranded RNA genome. The new coronavirus (SARS-CoV-2) is the seventh known coronavirus that can infect humans and cause serious illness, such as acute respiratory syndrome. The coronaviruses already identified have contributed to the understanding of the clinical manifestations caused by SARS-CoV-2, as well as their associations with the immune system. The aim of the present study was to carry out a narrative review of the literature on the host's immune response to infection by the new coronavirus. The review contains basic and summarized information on the main mechanisms involved in the immune response to SARS-CoV-2. The characteristics of the infection were considered according to the following: from the initial contact with the host through binding to angiotensin-converting enzyme 2 (ACE-2); the recognition of the pathogen by innate immunity cells; its containment mechanisms, including the production of effector cytokines and chemokines important in the development of the inflammatory process; and the participation of the complement system until the activation of the adaptive immune response. The probable occurrence of a host dysfunctional immune response and the escape mechanisms of the virus were also addressed. Despite numerous studies on the pathogenesis of SARS-CoV-2 infection, knowledge about the host's immune response in COVID-19 is not fully understood. The present work established the relationship between the new coronavirus and the immune system, but further studies are needed for all the mechanisms of the process to be elucidated.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY) that allows others to share and adapt the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.References
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J. 2020;133(9):1015-24. https://doi.org/10.1097/CM9.0000000000000722
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92(5):522-28. https://doi.org/10.1002/jmv.25700
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry EF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. https://doi.org/10.1038/s41591-020-0820-9
Sordi LHS, Magalhães ISO, Casselhas DA, Andrade MC. O papel da imunidade inata na COVID-19. Rev Cienc Saude. 2020;10(3):5-8. https://doi.org/10.21876/rcshci.v10i3.997
Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe. 2019;25(1):13-26. https://doi.org/10.1016/j.chom.2018.12.006
Arts RJW, Jooesten LAB, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol. 2016;28(5):425-30. https://doi.org/10.1016/j.smim.2016.09.002
Cruvinel WM, Mesquita JD, Araújo JAP, Catelan TTT, Souza AWS, Silva NP, et al. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol. 2010;50(4):434-47. https://doi.org/10.1590/S0482-50042010000400008
Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019;73:529-57. https://doi.org/10.1146/annurev-micro-020518-115759
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-20. https://doi.org/10.1016/j.cell.2010.01.022
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049. https://doi.org/10.1101/cshperspect.a006049
Mathern DR, Heeger PS. Molecules Great and Small: The Complement System. Clin J Am Soc Nephrol. 2015;10(9):1636-59. https://doi.org/10.2215/CJN.06230614
Appenheimer MM, Evans SS. Temperature and adaptive immunity. Handb Clin Neurol. 2018;156:397-415. https://doi.org/10.1016/B978-0-444-63912-7.00024-2
Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2:259-83. https://doi.org/10.1146/annurev-animal-022513-114201
Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, et al. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354-68. https://doi.org/10.1038/cmi.2016.4
Tufan A, Güler AA, Matucci-Cerinic M. COVID-19, immune system response, hyper inflammation and repurposing antirheumatic drugs. Turk J Med Sci. 2020;50(SI-1):620-32. https://doi.org/10.3906/sag-2004-168
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015
Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-9. https://doi.org/10.1016/j.micinf.2020.04.009
Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus – a perspective. Expert Rev Clin Immunol. 2020;16(5):465-70. https://doi.org/10.1080/1744666X.2020.1750954
Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15(3):259-67. https://doi.org/10.1097/00001432-200206000-00008
Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWS, Cruvinel WM, Andrade LEC, et al. Immune System – Part II Basis of the immunological response mediated by T and B lymphocytes. Rev Bras Reumatol. 2010;50(5):552-80. https://doi.org/10.1590/S0482-50042010000500008
Tay MZ, Poh CM, Rénia L, Macary PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. https://doi.org/10.1038/s41577-020-0311-8
Akhmerov A, Marbán E. COVID-19 and the Heart. Circulation Res. 2020;126(10):1443-55. https://doi.org/10.1161/CIRCRESAHA.120.317055
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019(COVID-19). Mil Med Res. 2020;7(1):11. https://doi.org/10.1186/s40779-020-00240-0
Vabret N, Britton GJ, Gruber C, Hedge S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910-41. https://doi.org/10.1016/j.immuni.2020.05.002
Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327-31. https://doi.org/10.23812/CONTI-E
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98(2):314-22. https://doi.org/10.1016/j.kint.2020.05.013
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants'' of hantaviral pathogenesis. Viruses. 2019;11(9):849. https://doi.org/10.3390/v11090849
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35:149-76. https://doi.org/10.1146/annurev-immunol-041015-055254
Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front Immunol. 2017;8:327. https://doi.org/10.3389/fimmu.2017.00327
Buttenschön J, Mattner J. The interplay between dendritic cells and CD8 T lymphocytes is a crucial component of SARS-CoV-2 immunity. Cell Mol Immunol. 2021;18(2):247-9. https://doi.org/10.1038/s41423-020-00624-1
Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70. https://doi.org/10.1016/j.jmii.2020.03.005
José RJ, Williams AE, Chambers RC. Proteinase-activated receptors in fibroproliferative lung disease. Thorax. 2014;69(2):190-2. https://doi.org/10.1136/thoraxjnl-2013-204367
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-7. https://doi.org/10.1016/S2213-2600(20)30216-2
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. https://doi.org/10.1172/JCI137244
Cunningham L, Simmonds P, Kimber I, Basketter DA, McFadden JP. Perforin and resistance to SARS coronavirus 2. J Allergy Clin Immunol. 2020;146(1):52-3. https://doi.org/10.1016/j.jaci.2020.05.007
Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, et al. HLA, Immune Response, and Susceptibility to COVID-19. Front Immunol. 2021;11:601886. https://doi.org/10.3389/fimmu.2020.601886
Candia P, Prattichizzo F, Garavelli S, Matarese G. T cells: Warriors of SARS-CoV-2 Infection. Trends Immunol. 2021;42(1):18-30. https://doi.org/10.1016/j.it.2020.11.002
Vossen MTM, Westerhout EM, Söderberg-Nauclér C, Wiertz EJHJ. Viral immune evasion: a masterpiece of evolution. Immunogenetics. 2002;54(8):527-42. https://doi.org/10.1007/s00251-002-0493-1
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. https://doi.org/10.1002/jmv.25685
Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y, Huang F, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potentially Downregulating MHC-I. BioRxiv. 2020. https://doi.org/10.1101/2020.05.24.111823