Resposta imunológica na Síndrome Respiratória Aguda induzida pelo novo coronavírus
Conteúdo do artigo principal
Resumo
Os coronavírus (CoVs) pertencem à família Coronaviridae, são envelopados com genoma de RNA (Ácido Ribonucleico) de fita simples e de sentido positivo. O novo coronavírus (SARS-CoV-2) é o sétimo coronavírus conhecido com capacidade de infectar seres humanos e pode provocar doença grave, como a síndrome respiratória aguda. Os coronavírus já identificados contribuíram para o entendimento das manifestações clínicas causadas pelo SARS-CoV-2, bem como suas correlações com o sistema imune. O presente trabalho teve o propósito de realizar uma revisão narrativa de literatura sobre a resposta imune do hospedeiro à infecção pelo novo coronavírus. A revisão contém informações básicas e resumidas dos principais mecanismos envolvidos na resposta imune ao SARS-CoV-2. Foram consideradas as características da infecção desde o contato inicial com o hospedeiro, por meio da ligação da Enzima Conversora de Angiotensina 2 (ECA2), o reconhecimento do patógeno pelas células da imunidade inata, seus mecanismos de contenção, incluindo a produção de citocinas efetoras e quimiocinas importantes no desenvolvimento do processo inflamatório, a participação do sistema complemento até a ativação da resposta imune adaptativa. Foram abordados também a provável ocorrência de uma resposta imune disfuncional do hospedeiro e os mecanismos de escape do vírus. Apesar dos inúmeros trabalhos sobre a patogenia da infecção pelo SARS-CoV-2, o conhecimento sobre a resposta imune do hospedeiro na COVID-19 não está totalmente esclarecido. O presente trabalho estabeleceu as relações do novo coronavírus com o sistema imunológico, entretanto, mais estudos ainda são necessários para que todos os mecanismos do processo sejam elucidados.
Downloads
Detalhes do artigo
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob uma licença Creative Commons CC BY que permite o compartilhamento e adaptação do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Referências
Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J. 2020;133(9):1015-24. https://doi.org/10.1097/CM9.0000000000000722
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020;92(5):522-28. https://doi.org/10.1002/jmv.25700
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry EF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-2. https://doi.org/10.1038/s41591-020-0820-9
Sordi LHS, Magalhães ISO, Casselhas DA, Andrade MC. O papel da imunidade inata na COVID-19. Rev Cienc Saude. 2020;10(3):5-8. https://doi.org/10.21876/rcshci.v10i3.997
Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe. 2019;25(1):13-26. https://doi.org/10.1016/j.chom.2018.12.006
Arts RJW, Jooesten LAB, Netea MG. Immunometabolic circuits in trained immunity. Semin Immunol. 2016;28(5):425-30. https://doi.org/10.1016/j.smim.2016.09.002
Cruvinel WM, Mesquita JD, Araújo JAP, Catelan TTT, Souza AWS, Silva NP, et al. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol. 2010;50(4):434-47. https://doi.org/10.1590/S0482-50042010000400008
Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019;73:529-57. https://doi.org/10.1146/annurev-micro-020518-115759
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-20. https://doi.org/10.1016/j.cell.2010.01.022
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3):a006049. https://doi.org/10.1101/cshperspect.a006049
Mathern DR, Heeger PS. Molecules Great and Small: The Complement System. Clin J Am Soc Nephrol. 2015;10(9):1636-59. https://doi.org/10.2215/CJN.06230614
Appenheimer MM, Evans SS. Temperature and adaptive immunity. Handb Clin Neurol. 2018;156:397-415. https://doi.org/10.1016/B978-0-444-63912-7.00024-2
Boehm T, Swann JB. Origin and evolution of adaptive immunity. Annu Rev Anim Biosci. 2014;2:259-83. https://doi.org/10.1146/annurev-animal-022513-114201
Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, et al. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354-68. https://doi.org/10.1038/cmi.2016.4
Tufan A, Güler AA, Matucci-Cerinic M. COVID-19, immune system response, hyper inflammation and repurposing antirheumatic drugs. Turk J Med Sci. 2020;50(SI-1):620-32. https://doi.org/10.3906/sag-2004-168
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. https://doi.org/10.1016/j.cell.2006.02.015
Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020;22(4-5):226-9. https://doi.org/10.1016/j.micinf.2020.04.009
Saghazadeh A, Rezaei N. Immune-epidemiological parameters of the novel coronavirus – a perspective. Expert Rev Clin Immunol. 2020;16(5):465-70. https://doi.org/10.1080/1744666X.2020.1750954
Grandvaux N, tenOever BR, Servant MJ, Hiscott J. The interferon antiviral response: from viral invasion to evasion. Curr Opin Infect Dis. 2002;15(3):259-67. https://doi.org/10.1097/00001432-200206000-00008
Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWS, Cruvinel WM, Andrade LEC, et al. Immune System – Part II Basis of the immunological response mediated by T and B lymphocytes. Rev Bras Reumatol. 2010;50(5):552-80. https://doi.org/10.1590/S0482-50042010000500008
Tay MZ, Poh CM, Rénia L, Macary PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. https://doi.org/10.1038/s41577-020-0311-8
Akhmerov A, Marbán E. COVID-19 and the Heart. Circulation Res. 2020;126(10):1443-55. https://doi.org/10.1161/CIRCRESAHA.120.317055
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019(COVID-19). Mil Med Res. 2020;7(1):11. https://doi.org/10.1186/s40779-020-00240-0
Vabret N, Britton GJ, Gruber C, Hedge S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910-41. https://doi.org/10.1016/j.immuni.2020.05.002
Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327-31. https://doi.org/10.23812/CONTI-E
Noris M, Benigni A, Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020;98(2):314-22. https://doi.org/10.1016/j.kint.2020.05.013
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants'' of hantaviral pathogenesis. Viruses. 2019;11(9):849. https://doi.org/10.3390/v11090849
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35:149-76. https://doi.org/10.1146/annurev-immunol-041015-055254
Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus. Front Immunol. 2017;8:327. https://doi.org/10.3389/fimmu.2017.00327
Buttenschön J, Mattner J. The interplay between dendritic cells and CD8 T lymphocytes is a crucial component of SARS-CoV-2 immunity. Cell Mol Immunol. 2021;18(2):247-9. https://doi.org/10.1038/s41423-020-00624-1
Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-70. https://doi.org/10.1016/j.jmii.2020.03.005
José RJ, Williams AE, Chambers RC. Proteinase-activated receptors in fibroproliferative lung disease. Thorax. 2014;69(2):190-2. https://doi.org/10.1136/thoraxjnl-2013-204367
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-7. https://doi.org/10.1016/S2213-2600(20)30216-2
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. https://doi.org/10.1172/JCI137244
Cunningham L, Simmonds P, Kimber I, Basketter DA, McFadden JP. Perforin and resistance to SARS coronavirus 2. J Allergy Clin Immunol. 2020;146(1):52-3. https://doi.org/10.1016/j.jaci.2020.05.007
Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, et al. HLA, Immune Response, and Susceptibility to COVID-19. Front Immunol. 2021;11:601886. https://doi.org/10.3389/fimmu.2020.601886
Candia P, Prattichizzo F, Garavelli S, Matarese G. T cells: Warriors of SARS-CoV-2 Infection. Trends Immunol. 2021;42(1):18-30. https://doi.org/10.1016/j.it.2020.11.002
Vossen MTM, Westerhout EM, Söderberg-Nauclér C, Wiertz EJHJ. Viral immune evasion: a masterpiece of evolution. Immunogenetics. 2002;54(8):527-42. https://doi.org/10.1007/s00251-002-0493-1
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. https://doi.org/10.1002/jmv.25685
Zhang Y, Zhang J, Chen Y, Luo B, Yuan Y, Huang F, et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potentially Downregulating MHC-I. BioRxiv. 2020. https://doi.org/10.1101/2020.05.24.111823