Automação no laboratório de microbiologia

Conteúdo do artigo principal

Juliane de Mello Fonseca
Inneke Marie van der Heijden

Resumo

Não se aplica

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
Fonseca, J. de M., & van der Heijden, I. M. (2019). Automação no laboratório de microbiologia. ABCS Health Sciences, 44(2). https://doi.org/10.7322/abcshs.v44i2.1313
Seção
Editorial

Referências

Rodrigues CAO, Araújo GM, Silveira IA, Martins RR. Automated phenotypic method versus manual method in the identification of microorganisms isolated from blood cultures: clinical and microbiological outcomes. ABCS Health Sci. 2019; 44(2):96-102. https://doi.org/10.7322/abcshs.v44i2.1156

Doern GV, Vautour R, Gaudet M, Levy B. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol. 1994;32(7):1757-62.

Burnham CA, Dunne WM, Greub G, Novak SM, Patel R. Automation in the clinical microbiology laboratory. Clin Chem. 2013;59(12):1696-702. http://dx.doi.org/10.1373/clinchem.2012.201038

Chatzigeorgiou KS, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG. Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J Clin Microbiol. 2011;49(9):3284-91. http://dx.doi.org/10.1128/JCM.00182-11

Donay JL, Mathieu D, Fernandes P, Prégermain C, Bruel P, Wargnier A, et al. Evaluation of the automated phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol. 2004;42(4):1542-6. https://doi.org/10.1128/jcm.42.4.1542-1546.2004

Anhalt JP, Fenselau C. Identification of bacteria using mass spectrometry. Anal Chem. 1975;47(2):219-25. https://doi.org/10.1021/ac60352a007

Pasternak J. Novas metodologias de identificação de micro-organismos: MALDI-TOF. Einstein (São Paulo). 2012;10(1):118-9. http://dx.doi.org/10.1590/S1679-45082012000100026

Kulah C, Aktas E, Comert F, Ozlu N, Akyar I, Ankarali H. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway. BMC Infect Dis. 2009;16(9):30. http://dx.doi.org/10.1186/1471-2334-9-30

Pfennigwerth N, Kaminski A, Korte-Berwanger M, Pfeifer Y, Simon M, Werner G, et al. Evaluation of six commercial products for colistin susceptibility testing in Enterobacterales. Clin Microbiol Infect. 2019; S1198-743X(19)30119-3. https://doi.org/10.1016/j.cmi.2019.03.017

Woodford N, Eastaway AT, Ford M, Leanord A, Keane C, Quayle RM, et al. Comparison of BD Phoenix, Vitek 2, and MicroScan automated systems for detection and inference of mechanisms responsible for carbapenem resistance in Enterobacteriaceae. J Clin Microbiol. 2010;48(8):2999-3002. http://dx.doi.org/10.1128/JCM.00341-10

Fernández-Cuenca F, Tomás M, Tormo N, Gimeno C, Bou G, Pascual A. Reporting identification of Acinetobacter spp genomic species: A nationwide proficiency study in Spain. Enferm Infecc Microbiol Clin. 2019;37(2):89-92. http://dx.doi.org/10.1016/j.eimc.2018.02.004

Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK, et al. Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis. 2011;70(4):442-7. http://dx.doi.org/10.1016/j.diagmicrobio.2011.04.013